In [1]:
import numpy as np
import cv2
# Initialize webcam
cap = cv2.VideoCapture(0)
# take first frame of the video
ret, frame = cap.read()
# setup default location of window
r, h, c, w = 240, 100, 400, 160
track_window = (c, r, w, h)
# Crop region of interest for tracking
roi = frame[r:r+h, c:c+w]
# Convert cropped window to HSV color space
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# Create a mask between the HSV bounds
lower_purple = np.array([130,60,60])
upper_purple = np.array([175,255,255])
mask = cv2.inRange(hsv_roi, lower_purple, upper_purple)
# Obtain the color histogram of the ROI
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])
# Normalize values to lie between the range 0, 255
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
# Setup the termination criteria
# We stop calculating the centroid shift after ten iterations
# or if the centroid has moved at least 1 pixel
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while True:
# Read webcam frame
ret, frame = cap.read()
if ret == True:
# Convert to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Calculate the histogram back projection
# Each pixel's value is it's probability
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# apply Camshift to get the new location
ret, track_window = cv2.CamShift(dst, track_window, term_crit)
# Draw it on image
# We use polylines to represent Adaptive box
pts = cv2.boxPoints(ret)
pts = np.int0(pts)
img2 = cv2.polylines(frame,[pts],True, 255,2)
cv2.imshow('Camshift Tracking', img2)
if cv2.waitKey(1) == 13: #13 is the Enter Key
break
else:
break
cv2.destroyAllWindows()
cap.release()